特征识别

①顶点是圆心;

②两条边都与圆周相交。

基本概念

顶点在圆心上,角的两边与圆周相交的角叫圆心角。圆心角∠AOB的取值范围是0°<∠AOB<360°

计算公式

①L(弧长)=(n/180)Xπr(n为圆心角度数,以下同);

②S(扇形面积)=(n/360)Xπr2;

③扇形圆心角n=(180L)/(πr)(度)。

④K=2Rsin(n/2)K=弦长;n=弦所对的圆心角,以度计。

相关定理

定理

圆心角的度数等于它所对的弧的度数。

与弧、弦、弦心距的关系

在同圆或等圆中,若两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,则对应的其余各组量也相等。

理解:(定义)

(1)等弧对等圆心角

(2)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.

(3)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.

(4)圆心角的度数和它们对的弧的度数相等.

推论:

在同圆或等圆中,如果(1)两个圆心角,(2)两条弧,(3)两条弦(4)两条弦上的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等

与圆周角关系

在同圆或等圆中,同弧或同弦所对的圆周角等于二分之一的圆心角。

定理证明:分三种情况讨论,始终做直径COD,利用等腰三角形等腰底角相等,外角等于两内角之和来证明。

词条信息

  • 浏览次数: 2174 次

  • 更新时间: 2015-01-08