平面解析几何

简介

平面解析几何包含以下几部分

直角坐标

1.1 有向线段

1.2 直线上的点的直角坐标

1.3 几个基本公式

1.4平面上的点的直角坐标

1.5射影的基本原理

1.6 几个基本公式

曲线与方程

2.1曲线的直角坐标方程的定义

2.2 已知曲线,求它的方程

2.3 已知曲线的方程,描绘曲线

2.4 曲线的交点

直线

3.1 直线的倾斜角和斜率

3.2 直线的方程

Y=kx+b

3.3 直线到点的有向距离

3.4 二元一次不等式表示的平面区域

3.5 两条直线的相关位置

3.6 二元二方程表示两条直线的条件

3.7 三条直线的相关位置

3.8 直线系

4.1 圆的定义

4.2 圆的方程

4.3 点和圆的相关位置

4.4 圆的切线

4.5 点关于圆的切点弦与极线

4.6 共轴圆系

4.7 平面上的反演变换

圆的基本知识

圆的定义

几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。

集合说:到定点的距离等于定长的点的集合叫做圆。

概括

把一个圆按一条直线对折过去,并且完全重合,展开再换个方向对折,折出后,这些折痕相交的一个点,叫做圆心,用字母O表示。连接圆心和圆上的任意一点的线段叫做半径,用字母r表示。通过圆心并且两端都在圆上的线段叫做直径,用字母d表示。圆心决定圆的位置,半径和直径决定圆的大小。在同一个圆或等圆中,半径都相等,直径也都相等,直径是半径的2倍,半径是直径的1/2。

用字母表示是:d=2r或r=d/2

圆的相关量

圆周率:圆周长度与圆的直径长度的比值叫做圆周率,它是一个无限不循环的小数通常用π表示,π=3.1415926535...,在实际应用中我们只取它的近似值,即π≈3.14(在奥数中一般π只取3、3.1416或3.14159)

圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧(arc)。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦(chord)。圆中最长的弦为直径(diameter)。

圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。

扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。

【圆和圆的相关量字母表示方法】

圆—⊙半径—r或R(在环形圆中外环半径表示的字母) 弧—⌒ 直径—d

扇形弧长/圆锥母线—l周长—C 面积—S

圆和其他图形的位置关系

圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO<r。

直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,0≤PO<r。

两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

⑵有关圆周角和圆心角的性质和定理 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。一条弧所对的圆周角等于它所对的圆心角的一半。 直径所对的圆周角是直角。90度的圆周角所对的弦是直径。 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。

⑶有关外接圆和内切圆的性质和定理

①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;

②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)

④两相切圆的连心线过切点(连心线:两个圆心相连的直线)

⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。

(5)圆心角的度数等于它所对的弧的度数。

(6)圆周角的度数等于它所对的弧的度数的一半。

(7)弦切角的度数等于它所夹的弧的度数的一半。

(8)圆内角的度数等于这个角所对的弧的度数之和的一半。

(9)圆外角的度数等于这个角所截两段弧的度数之差的一半。

有关切线的性质和定理

圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。

切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。

切线的性质:(1)经过切点垂直于过切点的半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。

切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。

〖有关圆的计算公式〗

1.圆的周长C=2πr=πd 2.圆的面积S=πr^2; 3.扇形弧长l=nπr/180

4.扇形面积S=(nπr^2)/360=lr/2(l为扇形的弧长)5.圆锥侧面积S=πrl 6.圆锥侧面展开图(扇形)的圆心角n=360r/l(r是底面半径,l是母线长)

切割线定理圆的一条切线与一条割线相交于p点,切线交圆于C点,割线交圆于A B两点 , 则有pC^2=pA·pB

割线定理与切割线定理相似 两条割线交于p点,割线m交圆于A1 B1两点,割线n交圆于A2 B2两点

则pA1·pB1=pA2·pB2

圆的解析几何性质和定理

圆的解析几何方程

圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0(其中D^2+E^2-4F>0)。其中和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2-r^2。该圆圆心坐标为(-D/2,-E/2),半径r=0.5√D^2+E^2-4F。

圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是 x=a+r*cosθ, y=b+r*sinθ, (其中θ为参数)

圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为 (x-a1)(x-a2)+(y-b1)(y-b2)=0

圆的离心率e=0,在圆上任意一点的曲率半径都是r。

经过圆 x^2+y^2=r^2上一点M(a0,b0)的切线方程为 a0*x+b0*y=r^2

在圆(x^2+y^2=r^2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0*x+b0*y=r^2

圆与直线的位置关系判断

平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:

1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:

如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:

当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;

当x1<x=-C/A<x2时,直线与圆相交;

半径r,直径d

在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2

x^2+y^2+Dx+Ey+F=0

=> (x+D/2)^2+(y+E/2)^2=D^2/4+E^2/4-F

=> 圆心坐标为(-D/2,-E/2)

其实只要保证X方Y方前系数都是1

就可以直接判断出圆心坐标为(-D/2,-E/2)

这可以作为一个结论运用的

且r=根号(圆心坐标的平方和-F)

圆知识点总结

定义:(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。

(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

圆心:(1)如定义(1)中,该定点为圆心

(2)如定义(2)中,绕的那一端的端点为圆心。

(3)圆任意两条对称轴的交点为圆心。

(4) 垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示

直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

圆的面积公式:圆所占平面的大小叫做圆的面积。πr&sup2;,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

周长计算公式

1.、已知直径:C=πd

2、已知半径:C=2πr

3、已知周长:D=c/π

4、圆周长的一半:1/2周长(曲线)

5、半圆的周长:1/2周长+直径(π÷2+1)

面积计算公式:

1、已知半径:S=πr&sup2;

2、已知直径:S=π(d/2)&sup2;;

3、已知周长:S=π(c/2π)&sup2;;

椭圆

5.1椭圆的定义

平面内与两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.

第二定义:

5.2 用平面截直圆锥面可以得到椭圆

5.3椭圆的标准方程

5.4 椭圆的基本性质及有关概念

5.5 点和椭圆的相关位置

5.6 椭圆的切线与法线

5.7 点关于椭圆的切点弦与极线

5.8 椭圆的面积

双曲线

6.1 双曲线的定义

6.2 用平面截直圆锥面可以得到双曲线

6.3 双曲线的标准方程

6.4 双曲线的基本性质及有关概念

6.5等轴双曲线

6.6共轭双曲线

6.7 点和双曲线的相关位置

6.8 双曲线的切线与法线

6.9 点关于双曲线的切点弦与极线

抛物线

7.1 抛物线的定义

7.2 用平面截直圆锥面可以得到抛物线

7.3 抛物线的标准方程

7.4 抛物线的基本性质及有关概念

7.5 点和抛物线的相关位置

7.6 抛物线的切线与法线

7.7 点关于抛物线的切点弦与极线

7.8 抛物线弓形的面积

坐标变换

8.1 坐标变换的概念

8.2 坐标轴的平移

8.3 利用平移化简曲线方程

8.4圆锥曲线的更一般的标准方程

8.5坐标轴的旋转

8.6坐标变换的一般公式

8.7 曲线的分类

8.8二次曲线在直角坐标变换下的不变量

8.9二元二次方程的曲线

8.10 二次曲线方程的化简

8.11 确定一条二次曲线的条件

8.12 二次曲线系

定理口诀

有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判[1]。

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

参数方程定义

在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t),y=φ(t)——(1);且对于t的每一个允许值,由方程组(1)所确定的点m(x,y)都在这条曲线上,那么方程组(1)称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数。类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t)。(2)

圆的参数方程 x=a+r cosθ y=b+r sinθ (θ属于[0,2π) ) (a,b)为圆心坐标 r为圆半径 θ为参数 (x,y)为经过点的坐标

椭圆的参数方程x=a cosθ y=b sinθ (θ属于[0,2π) ) a为长半轴 长 b为短半轴长 θ为参数

双曲线的参数方程x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数

抛物线的参数方程x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数

直线的参数方程x=x'+tcosa y=y'+tsina , x', y'和a表示直线经过(x',y'),且倾斜角为a,t为参数.

或者x=x'+ut, y=y'+vt (t属于R) x', y'直线经过定点(x',y'),u,v表示直线的方向 向量d=(u,v)

应用

在柯西中值定理的证明中,也运用到了参数方程。  柯西中值定理  如果函数f(x)及F(x)满足:  (1)在闭区间[a,b]上连续;  (2)在开区间(a,b)内可导;  (3)对任一x∈(a,b),F'(x)≠0,  那么在(a,b)内至少有一点ζ,使等式  [f(b)-f(a)]/[F(b)-F(a)]=f'(ζ)/F'(ζ)成立。  柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。

词条信息

  • 浏览次数: 1760 次

  • 更新时间: 2015-01-08